Tensor operators for ${ }^{\mathcal{U}_{h}(s l(2))}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 315467
(http://iopscience.iop.org/0305-4470/31/24/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.122
The article was downloaded on 02/06/2010 at 06:55

Please note that terms and conditions apply.

Tensor operators for $\mathcal{U}_{h}(s l(2))$

N Aizawa
Department of Applied Mathematics, Osaka Women's University, Sakai, Osaka 590-0035, Japan

Received 5 January 1998, in final form 2 March 1998

Abstract

Tensor operators for the Jordanian quantum algebra $\mathcal{U}_{h}(s l(2))$ are considered. Some explicit examples of them, which are obtained in the boson or fermion realization, are given and their properties are studied. It is also shown that the Wigner-Eckart theorem can be extended to $\mathcal{U}_{h}(s l(2))$.

1. Introduction

Recent studies on quantum matrices in two dimensions show that the Lie group $G L(2)$ admits two kinds of quantum deformation [1-3]. One of them is denoted by $G L_{p, q}(2)$ and has been studied extensively since the beginning of quantum group theory. The other is denoted by $G L_{g, h}(2)$ and is sometimes called the Jordanian quantum group. $S L_{h}(2)$ is the special case of $G L_{g, h}(2)$ obtained by setting $g=h$ and the quantum determinant to unity. The dual of $S L_{h}(2)$ is a deformation of the universal enveloping algebra of $s l(2)$ [4] and is called the Jordanian quantum algebra $\mathcal{U}_{h}(s l(2))$. The explicit form of the universal R-matrix for $\mathcal{U}_{h}(s l(2))$ is known [5, 6]. It is also known that $\mathcal{U}_{h}(s l(2))$ can be obtained from the Drinfeld-Jimbo $\mathcal{U}_{q}(s l(2))$ by a contraction [7]. The Hopf algebra dual to $G L_{g, h}(2)$ was found very recently [8].

The representation theory of $\mathcal{U}_{h}(s l(2))$ seems to have attracted some interest, since it has been revealed that the representation theories of $\mathcal{U}_{h}(s l(2))$ and $\operatorname{sl}(2)$ have some similarities. Finite-dimensional irreducible representations (irreps) were first considered in [9], then a simple way to construct irreps with a nonlinear relation between the generators of $\mathcal{U}_{h}(s l(2))$ and $s l(2)$ was proposed [10]. They show that the finite-dimensional irreps of $\mathcal{U}_{h}(s l(2))$ can be classified in the same way as those of $s l(2)$ (see also [11]). The infinite-dimensional representations are considered in [12] with boson realizations. The first attempt to decompose a tensor product of two finite-dimensional irreps was made in [13], then the problem was completely solved in $[14,15]$. This gives another similarity between the representation theories of $\mathcal{U}_{h}(s l(2))$ and $\operatorname{sl}(2)$, that is, the decomposition rule is exactly the same as for $\operatorname{sl}(2)$. Furthermore, an explicit formula for $\mathcal{U}_{h}(s l(2))$ Clebsch-Gordan coefficients (CGCs) is given in [14].

The nonlinear relation introduced in [10] gives an interesting observation for the coproduct of $\mathcal{U}_{h}(s l(2))$. We can regard $\mathcal{U}_{h}(s l(2))$ as the angular momentum algebra with a non-standard coupling rule. This might suggest that $\mathcal{U}_{h}(s l(2))$ has lots of applications to various fields in physics.

In this paper, we further develop the representation theory of $\mathcal{U}_{h}(\operatorname{sl}(2))$, in particular tensor operators will be studied. We review the known results on the representation of $\mathcal{U}_{h}(\operatorname{sl}(2))$ in the next two sections, in order to fix our notation and to list formulae used in
the subsequent sections. Tensor operators for $\mathcal{U}_{h}(s l(2))$ are introduced in section 4 according to [16]. Some explicit examples of $\mathcal{U}_{h}(s l(2))$ tensor operators are given and their properties are considered. In section 5, we consider an extension of the Wigner-Eckart theorem to $\mathcal{U}_{h}(s l(2))$.

2. $\mathcal{U}_{h}(s l(2))$ and its representations

The Jordanian quantum algebra $\mathcal{U}_{h}(s l(2))$ is an associative algebra with unity, and is generated by X, Y and H subjected to the relations [4]

$$
\begin{align*}
& {[X, Y]=H \quad[H, X]=2 \frac{\sinh h X}{h}} \\
& {[H, Y]=-Y(\cosh h X)-(\cosh h X) Y} \tag{2.1}
\end{align*}
$$

where h is the deformation parameter. The coproduct Δ, the counit ϵ and the antipode S are given by

$$
\begin{align*}
& \Delta(X)=X \otimes 1+1 \otimes X \\
& \Delta(Y)=Y \otimes \mathrm{e}^{h X}+\mathrm{e}^{-h X} \otimes Y \tag{2.2}\\
& \Delta(H)=H \otimes \mathrm{e}^{h X}+\mathrm{e}^{-h X} \otimes H \\
& \epsilon(X)=\epsilon(Y)=\epsilon(H)=0 \tag{2.3}\\
& S(X)=-X \quad S(Y)=-\mathrm{e}^{h X} Y \mathrm{e}^{-h X} \quad S(H)=-\mathrm{e}^{h X} H \mathrm{e}^{-h X} \tag{2.4}
\end{align*}
$$

so that $\mathcal{U}_{h}(s l(2))$ is a Hopf algebra. The Casimir element belonging to the centre of $\mathcal{U}_{h}(s l(2))$ is [5]

$$
\begin{equation*}
C=\frac{1}{2 h}\{Y(\sinh h X)+(\sinh h X) Y\}+\frac{1}{4} H^{2}+\frac{1}{4}(\sinh h X)^{2} . \tag{2.5}
\end{equation*}
$$

The Jordanian quantum algebra $\mathcal{U}_{h}(s l(2))$ is a non-standard deformation of the universal enveloping algebra of $s l(2)$, since all expressions given in (2.1)-(2.5) reduce to the corresponding ones for $s l(2)$ in the limit of $h \rightarrow 0$.

Note that we can eliminate the deformation parameter h from all expressions by making the replacement $h X \rightarrow X$ and $h^{-1} Y \rightarrow Y$. Thus, $\mathcal{U}_{h}(s l(2))$ is isomorphic to $\mathcal{U}_{h=1}(s l(2))$. We, however, keep the parameter h throughout this paper in order to consider the limit of $h \rightarrow 0$.

The finite-dimensional irreps of $\mathcal{U}_{h}(s l(2))$ can be obtained by using the nonlinear relation between generators of $\mathcal{U}_{h}(s l(2))$ and $s l(2)$ [10]. With the definition

$$
\begin{equation*}
Z_{+}=\frac{2}{h} \tanh \frac{h X}{2} \quad Z_{-}=\left(\cosh \frac{h X}{2}\right) Y\left(\cosh \frac{h X}{2}\right) \tag{2.6}
\end{equation*}
$$

it follows that $Z_{ \pm}$and H satisfy the $s l(2)$ commutation relations

$$
\begin{equation*}
\left[H, Z_{ \pm}\right]= \pm 2 Z_{ \pm} \quad\left[Z_{+}, Z_{-}\right]=H \tag{2.7}
\end{equation*}
$$

and the Casimir element (2.5) is rewritten as

$$
\begin{equation*}
C=Z_{+} Z_{-}+\frac{H}{2}\left(\frac{H}{2}-1\right) \tag{2.8}
\end{equation*}
$$

We can take undeformed representation bases for $Z_{ \pm}$and H

$$
\begin{align*}
& Z_{ \pm}|j m\rangle=\sqrt{(j \mp m)(j \pm m+1)}|j m \pm 1\rangle \\
& H|j m\rangle=2 m|j m\rangle \tag{2.9}\\
& C|j m\rangle=j(j+1)|j m\rangle
\end{align*}
$$

where $j=0,1 / 2,1,3 / 2, \ldots$ and $m=-j,-j+1, \ldots, j$. The vectors $\{|j m\rangle\}$ are nothing but the representation bases for $\operatorname{sl}(2)$; their complete orthonormality and the representation matrices for bra vectors follow immediately. The representation matrices for X and Y can be obtained by solving (2.9) with respect to $Z_{ \pm}$. The closed form of their expressions is given in [14] and this shows that finite-dimensional, highest-weight irreps for $\mathcal{U}_{h}(s l(2))$ are classified in the same way as for $\operatorname{sl}(2)$.

3. Clebsch-Gordan coefficients for $\mathcal{U}_{h}(s l(2))$

In this section, we review some known results on the tensor products of two irreps given in the previous section. Although $Z_{ \pm}$and H are the elements of $\operatorname{sl}(2)$, their coproducts are given in terms of $\Delta(X), \Delta(Y)$ and $\Delta(H)$ (see [13, 14] for explicit formulae of $\left.\Delta\left(Z_{ \pm}\right)\right)$so that the irreducible decomposition of tensor product representations is a non-trivial problem. This problem is solved in [13-15].

Theorem 1. The tensor product of two irreps of $\mathcal{U}_{h}(s l(2))$ with highest weight j_{1} and j_{2} is completely reducible and the decomposition into irreps is given by

$$
\begin{equation*}
j_{1} \otimes j_{2}=j_{1}+j_{2} \oplus j_{1}+j_{2}-1 \oplus \cdots \oplus\left|j_{1}-j_{2}\right| \tag{3.1}
\end{equation*}
$$

where each irrep is multiplicity free. Namely, the decomposition rules for $\mathcal{U}_{h}(s l(2))$ and $s l(2)$ are the same.

The CGCs for $\mathcal{U}_{h}(s l(2))$ can be obtained by introducing new vectors defined by

$$
\begin{equation*}
\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle=\sum_{k_{i}=m_{i}}^{j_{i}} \alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}\left|j_{1} k_{1}\right\rangle \otimes\left|j_{2} k_{2}\right\rangle \tag{3.2}
\end{equation*}
$$

where the coefficients $\alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}$ are given by

$$
\begin{equation*}
\alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}=(-1)^{k_{2}-m_{2}} \frac{h^{k_{1}+k_{2}-m_{1}-m_{2}}}{2} D_{k_{1}, k_{2}}^{m_{1}, m_{2}}\left(b_{k_{1}, k_{2}}^{m_{1}, m_{2}}-b_{k_{1}-1, k_{2}-1}^{m_{1}, m_{2}}\right) \tag{3.3}
\end{equation*}
$$

with

$$
\begin{aligned}
& D_{k_{1}, k_{2}}^{m_{1} m_{2}}=\left\{\frac{\left(j_{1}-m_{1}\right)!\left(j_{1}+k_{1}\right)!\left(j_{2}-m_{2}\right)!\left(j_{2}+k_{2}\right)!}{\left(j_{1}+m_{1}\right)!\left(j_{1}-k_{1}\right)!\left(j_{2}+m_{2}\right)!\left(j_{2}-k_{2}\right)!}\right\}^{1 / 2} \\
& b_{k_{1}, k_{2}}^{m_{1}, m_{2}}=\binom{m_{1}+k_{1}}{k_{2}-m_{2}}\binom{m_{2}+k_{2}}{k_{1}-m_{1}}
\end{aligned}
$$

We use the following definition of the binomial coefficients, since the superscripts m_{i} in $b_{k_{1}, k_{2}}^{m_{1}, m_{2}}$ take negative values

$$
\binom{n}{m}= \begin{cases}\frac{n(n-1)(n-2) \cdots(n-m+1)}{m!} & \text { for } m \geqslant 0 \\ 0 & \text { for } m<0\end{cases}
$$

Note that the coefficients $\alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}$ depend on j_{1} and j_{2}, although the dependence is not shown explicitly. Note also that, in the limit of $h \rightarrow 0$, all coefficients $\alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}$ vanish except for $\alpha_{m_{1}, m_{2}}^{m_{1}, m_{2}}=1$ so that $\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle \rightarrow\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle$. We refer to the vectors (3.2) as 'intermediate vectors' in this paper, since they are an intermediate step to the CGCs.

The important property of the intermediate vectors, which plays a crucial role in the following discussion, is the action of $\Delta\left(Z_{ \pm}\right)$and $\Delta(H)$ on the intermediate vectors given by

$$
\begin{gather*}
\Delta(H)\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle=2\left(m_{1}+m_{2}\right)\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle \\
\Delta\left(Z_{ \pm}\right)\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle=\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)}\left|\left(j_{1} m_{1} \pm 1\right)\left(j_{2} m_{2}\right)\right\rangle \\
+\sqrt{\left(j_{1} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)}\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2} \pm 1\right)\right\rangle . \tag{3.4}
\end{gather*}
$$

This tells us that the action of $\Delta\left(Z_{ \pm}\right)$and $\Delta(H)$ on an intermediate vector is the same as the action of the undeformed coproducts of $\operatorname{sl}(2)$ elements on a vector $\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle$. Therefore, the bases of irreps for $\Delta\left(Z_{ \pm}\right)$and $\Delta(H)$ are obtained by linear combinations of the intermediate vectors with the CGCs for $\operatorname{sl}(2)$:

$$
\begin{align*}
|j m\rangle & =\sum_{m_{1}+m_{2}=m} C_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle \\
& =\sum_{k_{i}=m_{i}}^{j_{i}} \sum_{m_{1}+m_{2}=m} C_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j} \alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}\left|j_{1} k_{1}\right\rangle \otimes\left|j_{2} k_{2}\right\rangle \tag{3.5}
\end{align*}
$$

where $C_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j}$ is an $s l(2)$ CGC.
The orthogonality of the coefficients $\alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}$ is obtained in [15]

$$
\begin{equation*}
\sum_{k_{1}, k_{2}} \alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}} \alpha_{-k_{1},-k_{2}}^{-n_{1}, n_{2}}=\delta_{m_{1}, n_{1}} \delta_{m_{2}, n_{2}} \tag{3.6}
\end{equation*}
$$

Before closing this section, we add a new result. The intermediate vectors for the dual space (space spanned by bra vectors) are given by

$$
\begin{equation*}
\left\langle\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right|=\sum_{k_{i}=-j_{i}}^{m_{i}} \alpha_{-k_{1},-k_{2}}^{-m_{1},-m_{2}}\left\langle j_{1} k_{1}\right| \otimes\left\langle j_{2} k_{2}\right| . \tag{3.7}
\end{equation*}
$$

The action of $\Delta\left(Z_{ \pm}\right)$and $\Delta(H)$ on (3.7) is the same as the action of the undeformed coproducts of $s l(2)$ elements on a vector $\left\langle j_{1} m_{1}\right| \otimes\left\langle j_{2} m_{2}\right|$. This can be proved by the same method as in [14]. The orthogonality of the coefficients $\alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}$ results in the orthonormality of the intermediate vectors

$$
\begin{equation*}
\left\langle\left(j_{1} n_{1}\right)\left(j_{2} n_{2}\right) \mid\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle=\delta_{n_{1}, m_{1}} \delta_{n_{2}, m_{2}} . \tag{3.8}
\end{equation*}
$$

Note that the representations of $\Delta(H)$ and $\Delta\left(Z_{ \pm}\right)$on the intermediate vectors (for both bra and ket vectors) are unitary. Therefore, equation (3.8) is nothing but the well known fact that the eigenvectors of a hermitian operator with different eigenvalues are orthogonal to each other.

4. Tensor operators for $\mathcal{U}_{h}(s l(2))$

4.1. Definition of tensor operators

Rittenberg and Scheunert [16] gave a general definition of tensor operators for a Hopf algebra. To define tensor operators, we first define the adjoint action of a Hopf algebra.

Definition 1. Let \mathcal{H} be a Hopf algebra, let W, W^{\prime} be its representation space, and let t be an operator which carries W into W^{\prime}. Then the adjoint action of $c \in \mathcal{H}$ on t is defined by

$$
\begin{equation*}
\operatorname{ad} c(t)=\sum_{i} c_{i} t S\left(c_{i}^{\prime}\right) \tag{4.1}
\end{equation*}
$$

where the coproduct for c is written as $\Delta(c)=\sum_{i} c_{i} \otimes c_{i}^{\prime}$.

The adjoint action has two important properties

$$
\begin{aligned}
& \operatorname{ad} c c^{\prime}(t)=\operatorname{ad} c \circ \operatorname{ad} c^{\prime}(t) \\
& \operatorname{ad} c(t \otimes s)=\sum_{i}\left(\operatorname{ad} c_{i}(t)\right) \otimes\left(\operatorname{ad} c_{i}^{\prime}(s)\right)
\end{aligned}
$$

From these properties, we can show that the adjoint action gives a representation of \mathcal{H}

$$
\begin{equation*}
\operatorname{ad}\left[c, c^{\prime}\right](t)=\left[\operatorname{ad} c, \operatorname{ad} c^{\prime}\right](t) \tag{4.2}
\end{equation*}
$$

Tensor operators are defined as operators which form representation bases of a Hopf algebra under the adjoint action.

Definition 2. Let T be a set of operators, and $D(c)^{(j)}$ be a representation matrix of $c \in \mathcal{H}$ with the highest weight j. The operators $t_{j m} \in T$ are called rank j tensor operators, if they satisfy the relations

$$
\begin{equation*}
\operatorname{ad} c\left(t_{j m}\right)=\sum_{k} D(c)_{k m}^{(j)} t_{j k} \tag{4.3}
\end{equation*}
$$

The adjoint action of X, Y and H is given by

$$
\begin{align*}
& \operatorname{ad} X\left(t_{j m}\right)=\left[X, t_{j m}\right] \\
& \operatorname{ad} Y\left(t_{j m}\right)=\mathrm{e}^{-h X}\left[\mathrm{e}^{h X} Y, t_{j m}\right] \mathrm{e}^{-h X} \tag{4.4}\\
& \operatorname{ad} H\left(t_{j m}\right)=\mathrm{e}^{-h X}\left[\mathrm{e}^{h X} H, t_{j m}\right] \mathrm{e}^{-h X}
\end{align*}
$$

4.2. Some examples of $\mathcal{U}_{h}(s l(2))$ tensor operators

In this section, we shall give explicit expressions of three kinds of $\mathcal{U}_{h}(s l(2))$ tensor operators. To show the existence of $\mathcal{U}_{h}(s l(2))$ tensor operators, it is enough to construct rank- $\frac{1}{2}$ tensor operators, since higher-rank tensor operators can be obtained by decomposing a tensor product of some rank- $\frac{1}{2}$ tensor operators. This is due to the fact that tensor operators are representation bases of $\mathcal{U}_{h}(s l(2))$ and we have an explicit formula for the $\mathcal{U}_{h}(s l(2))$ CGCs.

The tensor operators given here are: (i) rank- $\frac{1}{2}$ tensor operators in the fermion realization of $\mathcal{U}_{h}(s l(2))$; (ii) rank- $\frac{1}{2}$ tensor operators in the boson realization of $\mathcal{U}_{h}(s l(2))$; (iii) rank-1 tensor operators constructed by the generators of $\mathcal{U}_{h}(s l(2))$ themselves. The basic idea for (i) and (ii) is quite simple. We realize $\mathcal{U}_{h}(s l(2))$ with the generators of $\operatorname{sl}(2)$
$H=J_{0} \quad X=\frac{2}{h} \operatorname{arctanh}\left(\frac{h}{2} J_{+}\right) \quad Y=\sqrt{1-\left(\frac{h}{2} J_{+}\right)^{2}} J_{-} \sqrt{1-\left(\frac{h}{2} J_{+}\right)^{2}}$
where $J_{ \pm}$and J_{0} are generators of $\operatorname{sl}(2)$. This is obtained by solving (2.6) with respect to X and Y and regarding $\left\{Z_{ \pm}, H\right\}$ as the generators of $s l(2)$. Then we realize $s l(2)$ in terms of fermions or bosons. We need representation matrices of X, Y and H for $j=1 / 2$ and 1 to find the rank $-\frac{1}{2}$ or rank-1 tensor operators. The representation matrices for $j=1 / 2$ read

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and for $j=1$

$$
\begin{aligned}
X & =\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right) \\
H & =\operatorname{diag}(2,0,-2)
\end{aligned}
$$

Note that the representation matrices for $j=1 / 2$ are the same as those for $h \rightarrow 1$; however, rank- $\frac{1}{2}$ tensor operators are non-trivial since the adjoint action has a different form (see (4.4)).

Let us first consider the fermion realization. We introduce two kinds of mutually anticommuting fermions

$$
\left\{a_{i}, a_{j}^{\dagger}\right\}=\delta_{i j} \quad\left\{a_{i}, a_{j}\right\}=\left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\}=0 \quad i, j=1,2
$$

These fermions realize $\operatorname{sl}(2)$ (the so-called fermion quasi-spin formalism),

$$
\begin{equation*}
J_{+}=a_{1}^{\dagger} a_{2}^{\dagger} \quad J_{-}=a_{2} a_{1} \quad J_{0}=N_{1}+N_{2}-1 \tag{4.6}
\end{equation*}
$$

where $N_{i} \equiv a_{i}^{\dagger} a_{i}$ is the number operator for the i th fermion. This realization gives two representations of $s l(2)$ and $\mathcal{U}_{h}(s l(2))$. One of them is the two-dimensional irrep whose representation space $W^{(1 / 2)}$ has bases $\left|\frac{1}{2} \frac{1}{2}\right\rangle=a_{1}^{\dagger} a_{2}^{\dagger}|0\rangle$ and $\left|\frac{1}{2}-\frac{1}{2}\right\rangle=|0\rangle$, where $|0\rangle$ denotes the fermion vacuum. The other is the trivial representation whose representation space $W^{(0)}$ is spanned by $a_{1}^{\dagger}|0\rangle$ or $a_{2}^{\dagger}|0\rangle$. The advantage of the fermions is that the adjoint action has a simpler form, since the nilpotency of fermions results in $X^{2}=0$. We find two kinds of rank- $\frac{1}{2}$ tensor operators in this realization

$$
\begin{equation*}
t_{1 / 21 / 2}=-a_{1}^{\dagger} \quad t_{1 / 2-1 / 2}=-a_{2}+h\left(N_{2}-1\right) a_{1}^{\dagger} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1 / 21 / 2}=a_{2}^{\dagger}, t_{1 / 2-1 / 2}=-a_{1}-h\left(N_{1}-1\right) a_{2}^{\dagger} \tag{4.8}
\end{equation*}
$$

Straightforward computation shows that these satisfy the definition of rank- $\frac{1}{2}$ tensor operators. It is also easy to see that the action of both (4.7) and (4.8) on $W^{(1 / 2)}$ results in $W^{(0)}$ and vice versa.

Next we consider the boson realization. With two kinds of mutually commuting bosons

$$
\left[b_{i}, b_{j}^{\dagger}\right]=\delta_{i j} \quad\left[b_{i}, b_{j}\right]=\left[b_{i}^{\dagger}, b_{j}^{\dagger}\right]=0 \quad i, j=1,2
$$

the Lie algebra $\operatorname{sl}(2)$ is realized as (the Jordan-Schwinger realization)

$$
\begin{equation*}
J_{+}=b_{1}^{\dagger} b_{2} \quad J_{-}=b_{2}^{\dagger} b_{1} \quad J_{0}=N_{1}-N_{2} \tag{4.9}
\end{equation*}
$$

where $N_{i}=b_{i}^{\dagger} b_{i}$ is the number operator for the i th boson. We obtain any irrep of $\operatorname{sl}(2)$ and $\mathcal{U}_{h}(s l(2))$ in this realization. Let us denote the representation space for highest weight j by $W^{(j)}$, then the bases of $W^{(j)}$ are given by

$$
\begin{equation*}
|j m\rangle=\frac{\left(b_{1}^{\dagger}\right)^{j+m}\left(b_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0\rangle \quad m=-j,-j+1, \ldots, j \tag{4.10}
\end{equation*}
$$

where $|0\rangle$ denotes the boson vacuum. It is shown, by straightforward computation, that there exist two kinds of rank- $\frac{1}{2}$ tensor operators in this realization
$t_{1 / 21 / 2}=\left(1-\frac{h}{2} J_{+}\right)^{-1} b_{1}^{\dagger} \quad t_{1 / 2-1 / 2}=\left(1-\frac{h}{2} J_{+}\right) b_{2}^{\dagger}+\frac{h}{2}\left(t_{1 / 21 / 2}-b_{1}^{\dagger} J_{0}\right)$
and
$t_{1 / 21 / 2}=-\left(1-\frac{h}{2} J_{+}\right)^{-1} b_{2} \quad t_{1 / 2-1 / 2}=\left(1-\frac{h}{2} J_{+}\right) b_{1}+\frac{h}{2}\left(t_{1 / 21 / 2}+b_{2} J_{0}\right)$.

The action of (4.11) on $W^{(j)}$ reads

$$
\begin{align*}
t_{1 / 21 / 2}|j m\rangle= & \sum_{n=0}^{j-m}\left(\frac{h}{2}\right)^{n} \Gamma_{n}^{j m}\left|j+\frac{1}{2} m+\frac{1}{2}+n\right\rangle \tag{4.13}\\
t_{1 / 2-1 / 2}|j m\rangle= & \sqrt{j-m+1}\left|j+\frac{1}{2} m-\frac{1}{2}\right\rangle-\frac{h}{2}(j+m) \sqrt{j+m+1}\left|j+\frac{1}{2} m+\frac{1}{2}\right\rangle \\
& +\frac{h}{2} \sum_{n=1}^{j-m}\left(\frac{h}{2}\right)^{n} \Gamma_{n}^{j m}\left|j+\frac{1}{2} m+\frac{1}{2}+n\right\rangle \tag{4.14}
\end{align*}
$$

where

$$
\Gamma_{n}^{j m}=\left\{\frac{(j-m)!(j+m+n+1)!}{(j+m)!(j-m-n)!}\right\}^{1 / 2}
$$

On the other hand, the action of (4.12) on $W^{(j)}$ reads

$$
\begin{align*}
t_{1 / 21 / 2}|j m\rangle= & -\sum_{n=0}^{j-m-1}\left(\frac{h}{2}\right)^{n} \Lambda_{n}^{j m}\left|j-\frac{1}{2} m+\frac{1}{2}+n\right\rangle \tag{4.15}\\
t_{1 / 2-1 / 2}|j m\rangle= & \left|j-\frac{1}{2} m-\frac{1}{2}\right\rangle-\frac{h}{2} \sqrt{j-m}(j-m-1)\left|j-\frac{1}{2} m+\frac{1}{2}+n\right\rangle \\
& -\frac{h}{2} \sum_{n=1}^{j-m-1}\left(\frac{h}{2}\right)^{n} \Lambda_{n}^{j m}\left|j-\frac{1}{2} m+\frac{1}{2}+n\right\rangle \tag{4.16}
\end{align*}
$$

where

$$
\Lambda_{n}^{j m}=\left\{\frac{(j-m)!(j+m+n)!}{(j+m)!(j-m-n-1)!}\right\}^{1 / 2}
$$

Therefore, we see that the action of tensor operators (4.11) gives rise to a mapping $W^{(j)} \rightarrow W^{(j+1 / 2)}$, while the tensor operators (4.12) give rise to $W^{(j)} \rightarrow W^{(j-1 / 2)}$.

The third example of tensor operators is constructed with the generators of $\mathcal{U}_{h}(s l(2))$ themselves. It is also straightforward to verify that the rank-1 tensor operators are given by

$$
\begin{align*}
& t_{11}=-\mathrm{e}^{h X} \frac{\sinh h X}{h} \\
& t_{10}=\frac{\mathrm{e}^{h X} H}{\sqrt{2}} \tag{4.17}\\
& t_{1-1}=\mathrm{e}^{-h X / 2} Y \mathrm{e}^{-h X / 2}+\frac{h}{2} \mathrm{e}^{h X / 2} H \mathrm{e}^{h X / 2}-\frac{h}{2} H^{2}
\end{align*}
$$

These are a combination of the $\mathcal{U}_{h}(s l(2))$ generators so that they can act on any irrep space and do not change the value of highest weight: $t_{1 m}: W^{(j)} \rightarrow W^{(j)}$.

All the results given here are a natural analogue of $s l(2)$, since they have counterparts, which are well known properties of the $\operatorname{sl}(2)$ tensor operators, in the limit of $h \rightarrow 0$. Therefore, we have seen new similarities between the representation theories of $\mathcal{U}_{h}(s l(2))$ and $s l(2)$.

5. The Wigner-Eckart theorem

The results in the previous section enable us to consider an extension of the Wigner-Eckart theorem to the Jordanian quantum algebra $\mathcal{U}_{h}(s l(2))$. The purpose of this section is to show that the Wigner-Eckart theorem can be extended to $\mathcal{U}_{h}(s l(2))$.

Theorem 2. Let $T^{\left(j_{1}\right)}$ be a set of rank j_{1} tensor operators, let $W^{(j)}$ be an irrep space of $\mathcal{U}_{h}(s l(2))$ with highest weight j and suppose that $t_{j_{1} m_{1}} \in T^{\left(j_{1}\right)}: W^{\left(j_{2}\right)} \rightarrow W^{(j)}$. Then

$$
\begin{equation*}
\langle j m| t_{j_{1} m_{1}}\left|j_{2} m_{2}\right\rangle=I\left(j_{1} j_{2} j\right) \sum_{n_{i}=-j_{i}}^{j_{i}} \alpha_{-m_{1},-m_{2}}^{-n_{1},-n_{2}} C_{n_{1}, n_{2}, m}^{j_{1}, j_{2}, j} \tag{5.1}
\end{equation*}
$$

where $I\left(j_{1} j_{2} j\right)$ is a constant independent of m_{1}, m_{2} and m.
Proof. According to [17], we consider an element $t_{j_{1} m_{1}} \otimes\left|j_{2} m_{2}\right\rangle$ of $T^{\left(j_{1}\right)} \otimes W^{\left(j_{2}\right)}$. Both $T^{\left(j_{1}\right)}$ and $W^{\left(j_{2}\right)}$ are representation spaces of $\mathcal{U}_{h}(s l(2))$ so that $\Delta(c), c \in \mathcal{U}_{h}(s l(2))$, acts on $T^{\left(j_{1}\right)} \otimes W^{\left(j_{2}\right)}$. For example,
$\Delta(H) t_{j_{1} m_{1}} \otimes\left|j_{2} m_{2}\right\rangle=\operatorname{ad} H\left(t_{j_{1} m_{1}}\right) \otimes \mathrm{e}^{h X}\left|j_{2} m_{2}\right\rangle+\operatorname{ad} \mathrm{e}^{-h X}\left(t_{j_{1} m_{1}}\right) \otimes H\left|j_{2} m_{2}\right\rangle$.
The left-hand side of \otimes is a tensor operator, since the adjoint action is a linear transformation on $T^{\left(j_{1}\right)}$. Thus we can consider an action of the left-hand side of \otimes on the right-hand side: $t \otimes|j m\rangle \rightarrow t|j m\rangle$. This operation is called a 'contraction' in [17]. Noting that ad ${ }^{-h X}\left(t_{j_{1} m_{1}}\right)=\mathrm{e}^{-h X} t_{j_{1} m_{1}} \mathrm{e}^{h X}$ and contracting (5.2), we obtain $H t_{j_{1} m_{1}}\left|j_{2} m_{2}\right\rangle$. A similar calculation shows that

$$
\begin{equation*}
\Delta(c) t_{j_{1} m_{1}} \otimes\left|j_{2} m_{2}\right\rangle \rightarrow c t_{j_{1} m_{1}}\left|j_{2} m_{2}\right\rangle \tag{5.3}
\end{equation*}
$$

where the arrow means that the right-hand side is a result of the contraction.
An intermediate vector on $T^{\left(j_{1}\right)} \otimes W^{\left(j_{2}\right)}$ is given by

$$
\begin{equation*}
\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle=\sum_{k_{i}=-j_{i}}^{j_{i}} \alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}} t_{j_{1} k_{1}} \otimes\left|j_{2} k_{2}\right\rangle \tag{5.4}
\end{equation*}
$$

Because of (3.4), the action of $\Delta\left(Z_{ \pm}\right)$on the vector yields

$$
\begin{gather*}
\Delta\left(Z_{ \pm}\right)\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2}\right)\right\rangle=\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)}\left|\left(j_{1} m_{1} \pm 1\right)\left(j_{2} m_{2}\right)\right\rangle \\
+\sqrt{\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)}\left|\left(j_{1} m_{1}\right)\left(j_{2} m_{2} \pm 1\right)\right\rangle . \tag{5.5}
\end{gather*}
$$

Using (5.3), we obtain

$$
\begin{align*}
Z_{ \pm}\left|\varphi ; m_{1} m_{2}\right\rangle & =\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)}\left|\varphi ; m_{1} \pm 1 m_{2}\right\rangle \\
& +\sqrt{\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)}\left|\varphi ; m_{1} m_{2} \pm 1\right\rangle \tag{5.6}
\end{align*}
$$

where $\left|\varphi ; m_{1} m_{2}\right\rangle$ is the vector obtained from (5.4) by a contraction:

$$
\left|\varphi ; m_{1} m_{2}\right\rangle=\sum_{k_{i}=-j_{i}}^{j_{i}} \alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}} t_{j_{1} k_{1}}\left|j_{2} k_{2}\right\rangle
$$

The inner product of $|j m \pm 1\rangle$ and (5.6) gives the recurrence relations for $\left\langle j m \mid \varphi ; m_{1} m_{2}\right\rangle$

$$
\begin{gather*}
\sqrt{(j \mp m)(j \pm m+1)}\left\langle j m \mid \varphi ; m_{1} m_{2}\right\rangle=\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)}\left\langle j m \pm 1 \mid \varphi ; m_{1} \pm 1 m_{2}\right\rangle \\
+\sqrt{\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)}\left\langle j m \pm 1 \mid \varphi ; m_{1} m_{2} \pm 1\right\rangle \tag{5.7}
\end{gather*}
$$

The recurrence relations (5.7) are the same as those for the $\operatorname{sl}(2)$ CGCs; therefore, the quantity $\left\langle j m \mid \varphi ; m_{1} m_{2}\right\rangle$ must be proportional to the $s l(2)$ CGCs. Denoting the proportional coefficient by $I\left(j_{1} j_{2} j\right)$,

$$
\begin{equation*}
\left\langle j m \mid \varphi ; m_{1} m_{2}\right\rangle=\sum_{k_{i}=-j_{i}}^{j_{i}} \alpha_{k_{1}, k_{2}}^{m_{1}, m_{2}}\langle j m| t_{j_{1} k_{1}}\left|j_{2} k_{2}\right\rangle=C_{m_{1}, m_{2}, m}^{j_{1}, j_{2}, j} I\left(j_{1} j_{2} j\right) . \tag{5.8}
\end{equation*}
$$

This relation can be solved with respect to $\langle j m| t_{j_{1} k_{1}}\left|j_{2} k_{2}\right\rangle$, and the Wigner-Eckart theorem (5.1) has been proved.

Remark. From (3.7) and the fact that the $s l(2)$ CGCs for bra and ket vectors are equal, we see that the quantity appearing on the right-hand side of (5.1) is the $\mathcal{U}_{h}(\operatorname{sl}(2))$ CGC for bra vectors. This is a general property of the Wigner-Eckart theorem [18].

References

[1] Demidov E E et al 1990 Prog. Theor. Phys. Suppl. 102203
[2] Ewen H, Ogievetsky O and Wess J 1991 Lett. Math. Phys. 22297
[3] Zakrzewski S 1991 Lett. Math. Phys. 22287
[4] Ohn Ch 1992 Lett. Math. Phys. 2585
[5] Ballesteros A and Herranz F J 1996 J. Phys. A: Math. Gen. 29 L311
[6] Shariati A, Aghamohammadi A and Khorrami M 1996 Mod. Phys. Lett. A 11187
[7] Aghamohammadi A, Khorrami M and Shariati A 1995 J. Phys. A: Math. Gen. 28 L225
[8] Aneva B L, Dobrev V K and Mihov S G 1997 Duality for the Jordanian matrix quantum group $G L_{g, h}(2)$ Preprint INRNE-TH/3/97 q-alg/9705028.
[9] Dobrev V K 1996 Representations of the Jordanian quantum algebra $\mathcal{U}_{h}(\operatorname{sl}(2))$ Proc. 10th Int. Conf. 'Problems of Quantum Field Theory' ed D Shirkov, D Kazakov and A Vladimirov, JINR E2-96-369 (Dubna) p 104
[10] Abdesselam B, Chakrabarti A and Chakrabarti R 1996 Mod. Phys. Lett. A 112883
[11] Abdesselam B, Chakrabarti A and Chakrabarti R 1997 Int. J. Mod. Phys. A 122301
[12] Ballesteros A, Herranz F J and Negro J Boson representations, non-standard quantum algebras and contractions Preprint q -alg/9611031
[13] Aizawa N 1997 J. Phys. A: Math. Gen. 305981
[14] Van der Jeugt J Representations and Clebsch-Gordan coefficients for the Jordanian quantum algebra $\mathcal{U}_{h}(s l(2))$ Preprint q-alg/9703011
[15] Van der Jeugt J The Jordanian deformation of $\operatorname{su}(2)$ and Clebsch-Gordan coefficients Preprint $\mathrm{q}-\mathrm{alg} / 9709005$
[16] Rittenberg V and Scheunert M 1992 J. Math. Phys. 33436
[17] Biedenharn L C and Tarlini M 1990 Lett. Math. Phys. 20271
[18] Aizawa N 1993 J. Math. Phys. 341937

