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Abstract. Tensor operators for the Jordanian quantum algéhtal(2)) are considered. Some
explicit examples of them, which are obtained in the boson or fermion realization, are given and
their properties are studied. It is also shown that the Wigner—Eckart theorem can be extended
to Uy, (s1(2)).

1. Introduction

Recent studies on quantum matrices in two dimensions show that the Lie Grb(®)

admits two kinds of quantum deformation [1-3]. One of them is denoted by ,(2)

and has been studied extensively since the beginning of quantum group theory. The other
is denoted byGL, »,(2) and is sometimes called the Jordanian quantum gréup.(2) is

the special case offL, ,(2) obtained by settingg = & and the quantum determinant to
unity. The dual ofSL,(2) is a deformation of the universal enveloping algebral¢2) [4]

and is called the Jordanian quantum algeltési(2)). The explicit form of the universal
R-matrix forif, (s1(2)) is known [5, 6]. It is also known thdt,, (s/(2)) can be obtained from

the Drinfeld-Jimbd/, (s/(2)) by a contraction [7]. The Hopf algebra dual@L, ,(2) was

found very recently [8].

The representation theory &f,(sl(2)) seems to have attracted some interest, since
it has been revealed that the representation theoridg, 6f/(2)) and si(2) have some
similarities. Finite-dimensional irreducible representations (irreps) were first considered in
[9], then a simple way to construct irreps with a nonlinear relation between the generators
of U, (sl(2)) and s/(2) was proposed [10]. They show that the finite-dimensional irreps
of U, (s1(2)) can be classified in the same way as thosel02) (see also [11]). The
infinite-dimensional representations are considered in [12] with boson realizations. The first
attempt to decompose a tensor product of two finite-dimensional irreps was made in [13],
then the problem was completely solved in [14, 15]. This gives another similarity between
the representation theories @f(s/(2)) andsi(2), that is, the decomposition rule is exactly
the same as fosl/(2). Furthermore, an explicit formula faw,(s/(2)) Clebsch—Gordan
coefficients (CGCs) is given in [14].

The nonlinear relation introduced in [10] gives an interesting observation for the
coproduct ofif, (si(2)). We can regard/{,(sl(2)) as the angular momentum algebra with
a non-standard coupling rule. This might suggest ihak/(2)) has lots of applications to
various fields in physics.

In this paper, we further develop the representation theor,¢f/(2)), in particular
tensor operators will be studied. We review the known results on the representation of
U, (s1(2)) in the next two sections, in order to fix our notation and to list formulae used in
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the subsequent sections. Tensor operator&f@il(2)) are introduced in section 4 according

to [16]. Some explicit examples &f, (s/(2)) tensor operators are given and their properties
are considered. In section 5, we consider an extension of the Wigner—Eckart theorem to
U (s1(2)).

2. Uy (sl(2)) and its representations

The Jordanian quantum algebt4 (s/(2)) is an associative algebra with unity, and is
generated byX, Y and H subjected to the relations [4]

inhh X
[X.Y]=H  [H x]=22"

[H,Y] = —Y(coshhX) — (coshh X)Y (2.1)

whereh is the deformation parameter. The coprodugtthe counite and the antipodes
are given by

AX)=X®1+1®X

A=Y@ ¥+ e gy (2.2)
AH)=H® dX+e"™oH
e(X)=€e(Y)=€¢(H)=0 (2.3)

S(X)=-X S(Y)=—eXyehX S(Hy=—-€eXHe " (2.4)

so that4, (s/(2)) is a Hopf algebra. The Casimir element belonging to the centg @1(2))
is [5]

c 1
h Zh{
The Jordanian quantum algeli¥a(s/(2)) is a non-standard deformation of the universal
enveloping algebra of/(2), since all expressions given in (2.1)—(2.5) reduce to the
corresponding ones for (2) in the limit of 4 — 0.

Note that we can eliminate the deformation parametom all expressions by making
the replacementX — X andh™1Y — Y. Thus,U,(s/(2)) is isomorphic told,—1(sl(2)).
We, however, keep the parametethroughout this paper in order to consider the limit of
h — 0.

The finite-dimensional irreps &%, (s/(2)) can be obtained by using the nonlinear relation
between generators of, (si(2)) andsi(2) [10]. With the definition

1 1
Y (sinhiX) 4 (sinhhX)Y} + 21H2 + 21(sinth)Z. (2.5)

2 hX hX hX
Z, = —tanh— 7Z_= h— )Y h— 2.6
+=3 an > (cos > ) (cos 5 ) (2.6)
it follows that Z,. and H satisfy thes/(2) commutation relations
[H, Z.] = +2Z. [Z,,Z_]=H 2.7)
and the Casimir element (2.5) is rewritten as
H (H
C=272.Z +—(=-1). 2.8
2+ 5 (5-1) 28)

We can take undeformed representation baseg foand H
Zs|jm) = V(G Fm)( £m + Dl jm + 1)
H|jm) = 2m|jm) (2.9
Cljm) = j(j +Dljm)
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wherej =0,1/2,1,3/2,... andm = —j, —j +1,..., j. The vectors|jm)} are nothing
but the representation bases f@¢2); their complete orthonormality and the representation
matrices for bra vectors follow immediately. The representation matriceX fand Y can

be obtained by solving (2.9) with respect Zo.. The closed form of their expressions is
given in [14] and this shows that finite-dimensional, highest-weight irrep&/fai (2)) are
classified in the same way as fal(2).

3. Clebsch-Gordan coefficients foity, (sl(2))

In this section, we review some known results on the tensor products of two irreps given
in the previous section. Although. and H are the elements of (2), their coproducts are
given in terms ofA(X), A(Y) and A(H) (see [13, 14] for explicit formulae oA(Z.)) so

that the irreducible decomposition of tensor product representations is a non-trivial problem.
This problem is solved in [13-15].

Theorem 1. The tensor product of two irreps of;,(s/(2)) with highest weightj; and j,
is completely reducible and the decomposition into irreps is given by
N®j2=j1+ 2@+t j2—1®- @ |j1— j2 (3.1)

where each irrep is multiplicity free. Namely, the decomposition ruledfas/(2)) and
s1(2) are the same.

The CGCs foif, (sl(2)) can be obtained by introducing new vectors defined by

|(jam1) (jamz)) = Z a2 jik) @ | jokz) 3.2

K
where the coefficients;’ ;"' are given by

hk1+k2 myp—my
aml,mz — ( 1)k2 mp "

1111 my mq,my mi,mp
ko Bk, — b 2141 (3.3)

2 k1 ko

with

D _ { (1 = m)' (s + k)t (2 = m2) (fz + k2)! }1/2
e G+ mtGa = kDtGz +m2)! (2 = k2)!

bml smp ml + kl mz + k2
ke =\ kg —mp J \ ks —my1 )~

We use the following definition of the binomial coefficients, since the supersaripis
b’ take negative values

(n) nm—-—1n—-2)---(n—m+1) form >0

= m!

" 0 form < 0.

Note that the coefficients,’';"* depend orj; and j, although the dependence is not shown
explicitly. Note also that in the limit of, — 0, all coefficientsy;’*;”* vanish except for
amm2 — 1 g0 that|(jimy)(joma)) — |jim1) ® |jom2). We refer to the vectors (3.2) as

mi,my

‘intermediate vectors’ in this paper, since they are an intermediate step to the CGCs.
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The important property of the intermediate vectors, which plays a crucial role in the
following discussion, is the action ak(Z.) and A(H) on the intermediate vectors given

by
A(H)|(jam1) (jamz2)) = 2(m1 + m2)|(jim1)(j2m2))
A(Z1)|(jim1) (jam2)) = v/ (v F m1) (v £ ma + D] (jamy + 1) (jomz))

+v/ (1 F m2) (2 £ mz + D] (juma) (jomz + 1)). (3.4)
This tells us that the action ok (Z.) and A(H) on an intermediate vector is the same as
the action of the undeformed coproductsséf2) elements on a vectdrimi) ® |jmsz).
Therefore, the bases of irreps farZ.) and A(H) are obtained by linear combinations of
the intermediate vectors with the CGCs $d(2):

jm)y =Y CT|(jum1) (jam2))

mi+mo=m

Ji
Z Z Cornizd | jaki) ® | joka) (3.5)
ki=m; my+mo=m
whereCj5%27 is ansl(2) CGC.
The orthogonality of the coefficientg’; is obtained in [15]
> e e = BB (3.6)
ka,k2
Before closing this section, we add a new result. The intermediate vectors for the dual
space (space spanned by bra vectors) are given by

(Gam) (ama)| = D a2 (jika| ® (jokal. (3.7)
ki=—ji

The action of A(Z.) and A(H) on (3.7) is the same as the action of the undeformed
coproducts ofl(2) elements on a vectdrjimi| ® (jomz|. This can be proved by the same
method as in [14]. The orthogonality of the coefficieaf$;” results in the orthonormality
of the intermediate vectors

((jin) (J2n2)|(jam1) (jam2)) = 8uym1Onpmo- (3.8)

Note that the representations A{ H) and A(Z..) on the intermediate vectors (for both bra
and ket vectors) are unitary. Therefore, equation (3.8) is nothing but the well known fact
that the eigenvectors of a hermitian operator with different eigenvalues are orthogonal to
each other.

4. Tensor operators forl, (sl(2))

4.1. Definition of tensor operators

Rittenberg and Scheunert [16] gave a general definition of tensor operators for a Hopf
algebra. To define tensor operators, we first define the adjoint action of a Hopf algebra.

Definition 1. Let H be a Hopf algebra, leWv, W’ be its representation space, andtléte
an operator which carrie® into W’. Then the adjoint action of € H on is defined by

ade(t) = Y citS(c)) (4.1)

where the coproduct far is written asA(c) =), ¢; ® .
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The adjoint action has two important properties
adcec’(t) = adc o adc’(r)
ade(t ® s) = Z(adc,- (1)) ® (adci(s)).

From these properties, we can show that the adjoint action gives a representdtion of
adfc, ¢'1(t) = [adc, adc’](2). (4.2)

Tensor operators are defined as operators which form representation bases of a Hopf algebra
under the adjoint action.

Definition 2. Let T be a set of operators, adl(c)"/’ be a representation matrix efe H
with the highest weighy§i. The operators;,, € T are called ranki tensor operators, if they
satisfy the relations

adc(tj,) = Z D(C)/(({;ztjk' 4.3)
%

The adjoint action ofX, Y and H is given by
adX (tjm) = [X, tjn]
ady (tj,,) = e "*[e"*Y, 1;,] e (4.4)
adH (t;,,) = e "*[e"*H, 1;,, ] e™"*.

4.2. Some examples @ (sl(2)) tensor operators

In this section, we shall give explicit expressions of three kind%,6f!(2)) tensor operators.
To show the existence &f,(s/(2)) tensor operators, it is enough to construct rérliensor
operators, since higher-rank tensor operators can be obtained by decomposing a tensor
product of some ran%— tensor operators. This is due to the fact that tensor operators are
representation bases & (s/(2)) and we have an explicit formula for tlié, (s/(2)) CGCs.

The tensor operators given here are: (i) réﬁensor operators in the fermion realization
of Uy, (s1(2)); (ii) rank-% tensor operators in the boson realizatioriffsi(2)); (i) rank-1
tensor operators constructed by the generatofs,fl (2)) themselves. The basic idea for
(i) and (ii) is quite simple. We realiz&, (s/(2)) with the generators ofl(2)

H = J X—zarctan hJ Y=,/1 hJ 2J 1 hJ i (4.5)
- T h 27" - 2°1) 7" 27" '

where J.. and Jy are generators ofl(2). This is obtained by solving (2.6) with respect to
X andY and regardindZ.., H} as the generators 6f(2). Then we realizel(2) in terms
of fermions or bosons. We need representation matrices, &f and H for j = 1/2 and 1
to find the rank% or rank-1 tensor operators. The representation matriceg fotl/2 read

=0y =09 (3 9)

and forj =1
0 v2 0 0 —h%/22 0
X = (o 0 ﬁ) Y = (ﬁ 0 —h2/2ﬁ>
0 0 O 0 V2 0

H = diag2, 0, —2).
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Note that the representation matrices for= 1/2 are the same as those for— 1,
however, rank% tensor operators are non-trivial since the adjoint action has a different
form (see (4.4)).

Let us first consider the fermion realization. We introduce two kinds of mutually
anticommuting fermions

{a.aly=6;  {a.aq}=1{d.a}=0 ij=12
These fermions realize/(2) (the so-called fermion quasi-spin formalism),
Jiy = aIa; J_ = arax Jo=N1+N,—-1 (46)

whereN; = aiTai is the number operator for thi¢h fermion. This realization gives two
representations ofl(2) and U, (sl(2)). One of them is the two-dimensional irrep whose
representation spad& >/ has bases$; 3) = ala}|0) and 12 —1) = |0), where|0) denotes
the fermion vacuum. The other is the trivial representation whose representatiorigfSace
is spanned byzi|0) or a;|0). The advantage of the fermions is that the adjoint action has
a simpler form, since the nilpotency of fermions resultsih= 0. We find two kinds of

rank—% tensor operators in this realization

typ12 = —GI ty2—1/2 = —az + h(Np — 1)01 (4.7)

and

ty212 = a;, t12—1/2 = —a1 — h(Ny — 1)61; (4.8)

Straightforward computation shows that these satisfy the definition of %atrknsor
operators. It is also easy to see that the action of both (4.7) and (4.8) A results in
W© andvice versa
Next we consider the boson realization. With two kinds of mutually commuting bosons
[b;.b]] = 6;; [b;. b1 =[b.b]]1 =0 i,j=12

the Lie algebrasi(2) is realized as (the Jordan—Schwinger realization)
Jy=bib,  J=bii  Jo=Ni—N (4.9)

where N; = bj'b,- is the number operator for thith boson. We obtain any irrep of(2)
andi, (s1(2)) in this realization. Let us denote the representation space for highest weight
j by W@, then the bases dv\/) are given by

) — (b})7*m (bh)I
M= TG Tt —m)

where |0) denotes the boson vacuum. It is shown, by straightforward computation, that
there exist two kinds of ran%—tensor operators in this realization

0) m=—j,—j+1...,j (4.10)

o\t h h
t1212 = (1 - §J+> bi fy2_12 = (1 - Eh) b; + 501/21/2 - bIJo) (4.11)

and

o\t h h
M2 = — (1 - §J+> by tyo—12 = (1 - Eh) by + E(tl/Z y2 +bado).  (4.12)
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The action of (4.11) orw) reads

. =m p\t
fypyaljm) =y (§> Ve

n=0

1 1 h 1 1
tl/z_l/zljm)zvj—m+1j+§m—§>—§(j+m)\/j+m+1‘j+§m+§>

j—m n
_|_ﬁ ﬁ r/m
2e4\2) "

11
j+§m+§+ﬁ (4.13)

1 1

where

wm_{ﬁ—ij+m+n+D1M
"l GAmIG —m—n)! '
On the other hand, the action of (4.12) @ff/) reads

&t (R 11
wzalim == 32 (5) Ml gme 5 4n) (@15
1 1\ & 11
fi2-12ljm) = ‘j_i m—§>—§\/j—m(j—m—1)‘j—§ m+§+n>
wg?-hnAm' Lorls (4.16)
—= = : ——m+-+n .
2 £ \2) V72" T3

where

Am_{ U—mﬂu+m+m!}m
" lGHAmNG = m—n = D)
Therefore, we see that the action of tensor operators (4.11) gives rise to a mapping
W — wU+Y2 while the tensor operators (4.12) give riseWt) — W(=/2),

The third example of tensor operators is constructed with the generatdfs(6{2))
themselves. It is also straightforward to verify that the rank-1 tensor operators are given by

inhh X
f1 = _thSIn
h
¢XH
110 = ﬁ (4.17)

1= e X2y g=hX/2 | gehx/zH ghX/2 _ gHz_
These are a combination of th& (s/(2)) generators so that they can act on any irrep space
and do not change the value of highest weight; : W) — W,

All the results given here are a natural analoguel/@®), since they have counterparts,
which are well known properties of thd(2) tensor operators, in the limit o — O.
Therefore, we have seen new similarities between the representation theddgsI02))
andsl(2).

5. The Wigner—Eckart theorem

The results in the previous section enable us to consider an extension of the Wigner—Eckart
theorem to the Jordanian quantum algelgfési(2)). The purpose of this section is to show
that the Wigner—Eckart theorem can be extendetd;1G/(2)).
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Theorem 2. Let TV be a set of rankj; tensor operators, 1) be an irrep space of
U (s1(2)) with highest weightj and suppose thay,,, € 7V : W2 — W, Then

Ji
(mltm joma) = 1(jajaj) Y e ps =02 Civind (5.1)
ni=—ji
wherel (j1j2j) is a constant independent af, m, andm.

Proof. According to [17], we consider an elememt,, ® |j.mz) of TUY @ W2, Both
TUY and W2 are representation spacesiofi(si(2)) so thatA(c), ¢ € U, (sl(2)), acts on
T @ WU2, For example,
AH) iy ® | jomz) = 80H (tjm,) © €% jomz) +ad € (tj,,) © H|joma). (5.2)
The left-hand side oR is a tensor operator, since the adjoint action is a linear transformation
on TUY., Thus we can consider an action of the left-hand sidexobn the right-hand
side: t ® |jm) — t|jm). This operation is called a ‘contraction’ in [17]. Noting that
ad e (t;n,) = € "X, €% and contracting (5.2), we obtaiftj,,,|jom2). A similar
calculation shows that

A(C)tjlml ® |]2m2> - Ctj1m1|j2m2> (5'3)

where the arrow means that the right-hand side is a result of the contraction.
An intermediate vector off UV @ W2 is given by

|(jam1) (jamz)) = Z A sy ® |jka). (5.4)

ki=—ji

Because of (3.4), the action @f(Z..) on the vector yields
A(Z1)|(jim1) (jam2)) = /(v F m1) (v £ ma + D] (jamy + 1) (jomz))

+v/ (2 F m2) (jz £ ma + D (jama) (jamz £ 1)). (5.5)
Using (5.3), we obtain
Zilg; mim) = /(j1 F m1) (o £ m1 + Dlg; ma £ Lmy)

+v/ (2 F m2) (jo £ ma + 1)|@; mamp £ 1) (5.6)
where|p; mymy) is the vector obtained from (5.4) by a contraction:

l; mamy) Z Uty ik | jok2)
ki=—ji

The inner product ofj m £ 1) and (5.6) gives the recurrence relations §gm|@; mimy)
VG Fm)G Em+ D{jmlg; mumz) = /(1 Fm1)(rEmy+ D) (j m + Lg; my & mp)
+V/ 2 F m2) (o £ ma+ D(j m £ Lp; mama + 1). (5.7)

The recurrence relations (5.7) are the same as those fos/{Be CGCs; therefore, the
quantity (jm|¢; mimy) must be proportional to the (2) CGCs. Denoting the proportional
coefficient by (j1j27),

(jml@; mima) = Z A jmti, | joka) = CL2T T (j1ja)). (5.8)
ki=—Ji
This relation can be solved with respect tgmlt,|j2k2), and the Wigner—Eckart
theorem (5.1) has been proved. O
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Remark. From (3.7) and the fact that th&(2) CGCs for bra and ket vectors are equal,
we see that the quantity appearing on the right-hand side of (5.1) ig,1hé&2)) CGC for
bra vectors. This is a general property of the Wigner—Eckart theorem [18].
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