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Abstract. Tensor operators for the Jordanian quantum algebraUh(sl(2)) are considered. Some
explicit examples of them, which are obtained in the boson or fermion realization, are given and
their properties are studied. It is also shown that the Wigner–Eckart theorem can be extended
to Uh(sl(2)).

1. Introduction

Recent studies on quantum matrices in two dimensions show that the Lie groupGL(2)
admits two kinds of quantum deformation [1–3]. One of them is denoted byGLp,q(2)
and has been studied extensively since the beginning of quantum group theory. The other
is denoted byGLg,h(2) and is sometimes called the Jordanian quantum group.SLh(2) is
the special case ofGLg,h(2) obtained by settingg = h and the quantum determinant to
unity. The dual ofSLh(2) is a deformation of the universal enveloping algebra ofsl(2) [4]
and is called the Jordanian quantum algebraUh(sl(2)). The explicit form of the universal
R-matrix forUh(sl(2)) is known [5, 6]. It is also known thatUh(sl(2)) can be obtained from
the Drinfeld–JimboUq(sl(2)) by a contraction [7]. The Hopf algebra dual toGLg,h(2) was
found very recently [8].

The representation theory ofUh(sl(2)) seems to have attracted some interest, since
it has been revealed that the representation theories ofUh(sl(2)) and sl(2) have some
similarities. Finite-dimensional irreducible representations (irreps) were first considered in
[9], then a simple way to construct irreps with a nonlinear relation between the generators
of Uh(sl(2)) and sl(2) was proposed [10]. They show that the finite-dimensional irreps
of Uh(sl(2)) can be classified in the same way as those ofsl(2) (see also [11]). The
infinite-dimensional representations are considered in [12] with boson realizations. The first
attempt to decompose a tensor product of two finite-dimensional irreps was made in [13],
then the problem was completely solved in [14, 15]. This gives another similarity between
the representation theories ofUh(sl(2)) andsl(2), that is, the decomposition rule is exactly
the same as forsl(2). Furthermore, an explicit formula forUh(sl(2)) Clebsch–Gordan
coefficients (CGCs) is given in [14].

The nonlinear relation introduced in [10] gives an interesting observation for the
coproduct ofUh(sl(2)). We can regardUh(sl(2)) as the angular momentum algebra with
a non-standard coupling rule. This might suggest thatUh(sl(2)) has lots of applications to
various fields in physics.

In this paper, we further develop the representation theory ofUh(sl(2)), in particular
tensor operators will be studied. We review the known results on the representation of
Uh(sl(2)) in the next two sections, in order to fix our notation and to list formulae used in
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the subsequent sections. Tensor operators forUh(sl(2)) are introduced in section 4 according
to [16]. Some explicit examples ofUh(sl(2)) tensor operators are given and their properties
are considered. In section 5, we consider an extension of the Wigner–Eckart theorem to
Uh(sl(2)).

2. Uh(sl(2)) and its representations

The Jordanian quantum algebraUh(sl(2)) is an associative algebra with unity, and is
generated byX, Y andH subjected to the relations [4]

[X, Y ] = H [H,X] = 2
sinhhX

h

[H, Y ] = −Y (coshhX)− (coshhX)Y (2.1)

whereh is the deformation parameter. The coproduct1, the counitε and the antipodeS
are given by

1(X) = X ⊗ 1+ 1⊗X
1(Y) = Y ⊗ ehX + e−hX ⊗ Y (2.2)

1(H) = H ⊗ ehX + e−hX ⊗H
ε(X) = ε(Y ) = ε(H) = 0 (2.3)

S(X) = −X S(Y ) = −ehXY e−hX S(H) = −ehXH e−hX (2.4)

so thatUh(sl(2)) is a Hopf algebra. The Casimir element belonging to the centre ofUh(sl(2))
is [5]

C = 1

2h
{Y (sinhhX)+ (sinhhX)Y } + 1

4
H 2+ 1

4
(sinhhX)2. (2.5)

The Jordanian quantum algebraUh(sl(2)) is a non-standard deformation of the universal
enveloping algebra ofsl(2), since all expressions given in (2.1)–(2.5) reduce to the
corresponding ones forsl(2) in the limit of h→ 0.

Note that we can eliminate the deformation parameterh from all expressions by making
the replacementhX → X andh−1Y → Y . Thus,Uh(sl(2)) is isomorphic toUh=1(sl(2)).
We, however, keep the parameterh throughout this paper in order to consider the limit of
h→ 0.

The finite-dimensional irreps ofUh(sl(2)) can be obtained by using the nonlinear relation
between generators ofUh(sl(2)) andsl(2) [10]. With the definition

Z+ = 2

h
tanh

hX

2
Z− =

(
cosh

hX

2

)
Y

(
cosh

hX

2

)
(2.6)

it follows thatZ± andH satisfy thesl(2) commutation relations

[H,Z±] = ±2Z± [Z+, Z−] = H (2.7)

and the Casimir element (2.5) is rewritten as

C = Z+Z− + H
2

(
H

2
− 1

)
. (2.8)

We can take undeformed representation bases forZ± andH

Z±|jm〉 =
√
(j ∓m)(j ±m+ 1)|jm± 1〉

H |jm〉 = 2m|jm〉 (2.9)

C|jm〉 = j (j + 1)|jm〉
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wherej = 0, 1/2, 1, 3/2, . . . andm = −j,−j + 1, . . . , j . The vectors{|jm〉} are nothing
but the representation bases forsl(2); their complete orthonormality and the representation
matrices for bra vectors follow immediately. The representation matrices forX andY can
be obtained by solving (2.9) with respect toZ±. The closed form of their expressions is
given in [14] and this shows that finite-dimensional, highest-weight irreps forUh(sl(2)) are
classified in the same way as forsl(2).

3. Clebsch–Gordan coefficients forUh(sl(2))

In this section, we review some known results on the tensor products of two irreps given
in the previous section. AlthoughZ± andH are the elements ofsl(2), their coproducts are
given in terms of1(X), 1(Y) and1(H) (see [13, 14] for explicit formulae of1(Z±)) so
that the irreducible decomposition of tensor product representations is a non-trivial problem.
This problem is solved in [13–15].

Theorem 1. The tensor product of two irreps ofUh(sl(2)) with highest weightj1 and j2

is completely reducible and the decomposition into irreps is given by

j1⊗ j2 = j1+ j2⊕ j1+ j2− 1⊕ · · · ⊕ |j1− j2| (3.1)

where each irrep is multiplicity free. Namely, the decomposition rules forUh(sl(2)) and
sl(2) are the same.

The CGCs forUh(sl(2)) can be obtained by introducing new vectors defined by

|(j1m1)(j2m2)〉 =
ji∑

ki=mi
α
m1,m2
k1,k2
|j1k1〉 ⊗ |j2k2〉 (3.2)

where the coefficientsαm1,m2
k1,k2

are given by

α
m1,m2
k1,k2

= (−1)k2−m2
h

2

k1+k2−m1−m2

D
m1,m2
k1,k2

(b
m1,m2
k1,k2

− bm1,m2
k1−1,k2−1) (3.3)

with

D
m1,m2
k1,k2

=
{
(j1−m1)!(j1+ k1)!(j2−m2)!(j2+ k2)!

(j1+m1)!(j1− k1)!(j2+m2)!(j2− k2)!

}1/2

b
m1,m2
k1,k2

=
(
m1+ k1

k2−m2

)(
m2+ k2

k1−m1

)
.

We use the following definition of the binomial coefficients, since the superscriptsmi in
b
m1,m2
k1,k2

take negative values

(
n

m

)
=

n(n− 1)(n− 2) · · · (n−m+ 1)

m!
for m > 0

0 for m < 0.

Note that the coefficientsαm1,m2
k1,k2

depend onj1 andj2, although the dependence is not shown
explicitly. Note also that, in the limit ofh → 0, all coefficientsαm1,m2

k1,k2
vanish except for

αm1,m2
m1,m2

= 1 so that|(j1m1)(j2m2)〉 → |j1m1〉 ⊗ |j2m2〉. We refer to the vectors (3.2) as
‘intermediate vectors’ in this paper, since they are an intermediate step to the CGCs.
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The important property of the intermediate vectors, which plays a crucial role in the
following discussion, is the action of1(Z±) and1(H) on the intermediate vectors given
by

1(H)|(j1m1)(j2m2)〉 = 2(m1+m2)|(j1m1)(j2m2)〉
1(Z±)|(j1m1)(j2m2)〉 =

√
(j1∓m1)(j1±m1+ 1)|(j1m1± 1)(j2m2)〉

+
√
(j1∓m2)(j2±m2+ 1)|(j1m1)(j2m2± 1)〉. (3.4)

This tells us that the action of1(Z±) and1(H) on an intermediate vector is the same as
the action of the undeformed coproducts ofsl(2) elements on a vector|j1m1〉 ⊗ |j2m2〉.
Therefore, the bases of irreps for1(Z±) and1(H) are obtained by linear combinations of
the intermediate vectors with the CGCs forsl(2):

|jm〉 =
∑

m1+m2=m
Cj1,j2,j
m1,m2,m

|(j1m1)(j2m2)〉

=
ji∑

ki=mi

∑
m1+m2=m

Cj1,j2,j
m1,m2,m

α
m1,m2
k1,k2
|j1k1〉 ⊗ |j2k2〉 (3.5)

whereCj1,j2,j
m1,m2,m is ansl(2) CGC.

The orthogonality of the coefficientsαm1,m2
k1,k2

is obtained in [15]∑
k1,k2

α
m1,m2
k1,k2

α
−n1,−n2
−k1,−k2

= δm1,n1δm2,n2. (3.6)

Before closing this section, we add a new result. The intermediate vectors for the dual
space (space spanned by bra vectors) are given by

〈(j1m1)(j2m2)| =
mi∑

ki=−ji
α
−m1,−m2
−k1,−k2

〈j1k1| ⊗ 〈j2k2|. (3.7)

The action of1(Z±) and1(H) on (3.7) is the same as the action of the undeformed
coproducts ofsl(2) elements on a vector〈j1m1| ⊗ 〈j2m2|. This can be proved by the same
method as in [14]. The orthogonality of the coefficientsαm1,m2

k1,k2
results in the orthonormality

of the intermediate vectors

〈(j1n1)(j2n2)|(j1m1)(j2m2)〉 = δn1,m1δn2,m2. (3.8)

Note that the representations of1(H) and1(Z±) on the intermediate vectors (for both bra
and ket vectors) are unitary. Therefore, equation (3.8) is nothing but the well known fact
that the eigenvectors of a hermitian operator with different eigenvalues are orthogonal to
each other.

4. Tensor operators forUh(sl(2))

4.1. Definition of tensor operators

Rittenberg and Scheunert [16] gave a general definition of tensor operators for a Hopf
algebra. To define tensor operators, we first define the adjoint action of a Hopf algebra.

Definition 1. Let H be a Hopf algebra, letW,W ′ be its representation space, and lett be
an operator which carriesW into W ′. Then the adjoint action ofc ∈ H on t is defined by

adc(t) =
∑
i

ci tS(c
′
i ) (4.1)

where the coproduct forc is written as1(c) =∑i ci ⊗ c′i .
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The adjoint action has two important properties

adcc′(t) = adc ◦ adc′(t)
adc(t ⊗ s) =

∑
i

(adci(t))⊗ (adc′i (s)).

From these properties, we can show that the adjoint action gives a representation ofH
ad[c, c′](t) = [adc, adc′](t). (4.2)

Tensor operators are defined as operators which form representation bases of a Hopf algebra
under the adjoint action.

Definition 2. Let T be a set of operators, andD(c)(j) be a representation matrix ofc ∈ H
with the highest weightj . The operatorstjm ∈ T are called rankj tensor operators, if they
satisfy the relations

adc(tjm) =
∑
k

D(c)
(j)

kmtjk. (4.3)

The adjoint action ofX, Y andH is given by

adX(tjm) = [X, tjm]

adY (tjm) = e−hX[ehXY, tjm] e−hX (4.4)

adH(tjm) = e−hX[ehXH, tjm] e−hX.

4.2. Some examples ofUh(sl(2)) tensor operators

In this section, we shall give explicit expressions of three kinds ofUh(sl(2)) tensor operators.
To show the existence ofUh(sl(2)) tensor operators, it is enough to construct rank-1

2 tensor
operators, since higher-rank tensor operators can be obtained by decomposing a tensor
product of some rank-1

2 tensor operators. This is due to the fact that tensor operators are
representation bases ofUh(sl(2)) and we have an explicit formula for theUh(sl(2)) CGCs.

The tensor operators given here are: (i) rank-1
2 tensor operators in the fermion realization

of Uh(sl(2)); (ii) rank-1
2 tensor operators in the boson realization ofUh(sl(2)); (iii) rank-1

tensor operators constructed by the generators ofUh(sl(2)) themselves. The basic idea for
(i) and (ii) is quite simple. We realizeUh(sl(2)) with the generators ofsl(2)

H = J0 X = 2

h
arctanh

(
h

2
J+

)
Y =

√
1−

(
h

2
J+

)2

J−

√
1−

(
h

2
J+

)2

(4.5)

whereJ± andJ0 are generators ofsl(2). This is obtained by solving (2.6) with respect to
X andY and regarding{Z±, H } as the generators ofsl(2). Then we realizesl(2) in terms
of fermions or bosons. We need representation matrices ofX, Y andH for j = 1/2 and 1
to find the rank-12 or rank-1 tensor operators. The representation matrices forj = 1/2 read

X =
(

0 1
0 0

)
Y =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
and forj = 1

X =
( 0

√
2 0

0 0
√

2
0 0 0

)
Y =

( 0 −h2/2
√

2 0√
2 0 −h2/2

√
2

0
√

2 0

)
H = diag(2, 0,−2).
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Note that the representation matrices forj = 1/2 are the same as those forh → 1;
however, rank-12 tensor operators are non-trivial since the adjoint action has a different
form (see (4.4)).

Let us first consider the fermion realization. We introduce two kinds of mutually
anticommuting fermions

{ai, a†j } = δij {ai, aj } = {a†i , a†j } = 0 i, j = 1, 2.

These fermions realizesl(2) (the so-called fermion quasi-spin formalism),

J+ = a†1a†2 J− = a2a1 J0 = N1+N2− 1 (4.6)

whereNi ≡ a
†
i ai is the number operator for theith fermion. This realization gives two

representations ofsl(2) and Uh(sl(2)). One of them is the two-dimensional irrep whose
representation spaceW(1/2) has bases| 12 1

2〉 = a†1a†2|0〉 and | 12 − 1
2〉 = |0〉, where|0〉 denotes

the fermion vacuum. The other is the trivial representation whose representation spaceW(0)

is spanned bya†1|0〉 or a†2|0〉. The advantage of the fermions is that the adjoint action has
a simpler form, since the nilpotency of fermions results inX2 = 0. We find two kinds of
rank-1

2 tensor operators in this realization

t1/2 1/2 = −a†1 t1/2−1/2 = −a2+ h(N2− 1)a†1 (4.7)

and

t1/2 1/2 = a†2, t1/2−1/2 = −a1− h(N1− 1)a†2. (4.8)

Straightforward computation shows that these satisfy the definition of rank-1
2 tensor

operators. It is also easy to see that the action of both (4.7) and (4.8) onW(1/2) results in
W(0) andvice versa.

Next we consider the boson realization. With two kinds of mutually commuting bosons

[bi, b
†
j ] = δij [bi, bj ] = [b†i , b

†
j ] = 0 i, j = 1, 2

the Lie algebrasl(2) is realized as (the Jordan–Schwinger realization)

J+ = b†1b2 J− = b†2b1 J0 = N1−N2 (4.9)

whereNi = b†i bi is the number operator for theith boson. We obtain any irrep ofsl(2)
andUh(sl(2)) in this realization. Let us denote the representation space for highest weight
j by W(j), then the bases ofW(j) are given by

|jm〉 = (b
†
1)
j+m(b†2)

j−m
√
(j +m)!(j −m)! |0〉 m = −j,−j + 1, . . . , j (4.10)

where |0〉 denotes the boson vacuum. It is shown, by straightforward computation, that
there exist two kinds of rank-1

2 tensor operators in this realization

t1/2 1/2 =
(

1− h
2
J+

)−1

b
†
1 t1/2−1/2 =

(
1− h

2
J+

)
b
†
2+

h

2
(t1/2 1/2− b†1J0) (4.11)

and

t1/2 1/2 = −
(

1− h
2
J+

)−1

b2 t1/2−1/2 =
(

1− h
2
J+

)
b1+ h

2
(t1/2 1/2+ b2J0). (4.12)
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The action of (4.11) onW(j) reads

t1/2 1/2|jm〉 =
j−m∑
n=0

(
h

2

)n
0jmn

∣∣∣∣j + 1

2
m+ 1

2
+ n

〉
(4.13)

t1/2−1/2|jm〉 =
√
j −m+ 1

∣∣∣∣j + 1

2
m− 1

2

〉
− h

2
(j +m)

√
j +m+ 1

∣∣∣∣j + 1

2
m+ 1

2

〉
+h

2

j−m∑
n=1

(
h

2

)n
0jmn

∣∣∣∣j + 1

2
m+ 1

2
+ n

〉
(4.14)

where

0jmn =
{
(j −m)!(j +m+ n+ 1)!

(j +m)!(j −m− n)!
}1/2

.

On the other hand, the action of (4.12) onW(j) reads

t1/2 1/2|jm〉 = −
j−m−1∑
n=0

(
h

2

)n
3jm
n

∣∣∣∣j − 1

2
m+ 1

2
+ n

〉
(4.15)

t1/2−1/2|jm〉 =
∣∣∣∣j − 1

2
m− 1

2

〉
− h

2

√
j −m(j −m− 1)

∣∣∣∣j − 1

2
m+ 1

2
+ n

〉
−h

2

j−m−1∑
n=1

(
h

2

)n
3jm
n

∣∣∣∣j − 1

2
m+ 1

2
+ n

〉
(4.16)

where

3jm
n =

{
(j −m)!(j +m+ n)!

(j +m)!(j −m− n− 1)!

}1/2

.

Therefore, we see that the action of tensor operators (4.11) gives rise to a mapping
W(j)→ W(j+1/2), while the tensor operators (4.12) give rise toW(j)→ W(j−1/2).

The third example of tensor operators is constructed with the generators ofUh(sl(2))
themselves. It is also straightforward to verify that the rank-1 tensor operators are given by

t1 1 = −ehX
sinhhX

h

t1 0 = ehXH√
2

(4.17)

t1−1 = e−hX/2Y e−hX/2+ h
2

ehX/2H ehX/2− h
2
H 2.

These are a combination of theUh(sl(2)) generators so that they can act on any irrep space
and do not change the value of highest weight:t1m : W(j)→ W(j).

All the results given here are a natural analogue ofsl(2), since they have counterparts,
which are well known properties of thesl(2) tensor operators, in the limit ofh → 0.
Therefore, we have seen new similarities between the representation theories ofUh(sl(2))
andsl(2).

5. The Wigner–Eckart theorem

The results in the previous section enable us to consider an extension of the Wigner–Eckart
theorem to the Jordanian quantum algebraUh(sl(2)). The purpose of this section is to show
that the Wigner–Eckart theorem can be extended toUh(sl(2)).
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Theorem 2. Let T (j1) be a set of rankj1 tensor operators, letW(j) be an irrep space of
Uh(sl(2)) with highest weightj and suppose thattj1m1 ∈ T (j1) : W(j2)→ W(j). Then

〈jm|tj1m1|j2m2〉 = I (j1j2j)

ji∑
ni=−ji

α
−n1,−n2−m1,−m2

Cj1,j2,j
n1,n2,m

(5.1)

whereI (j1j2j) is a constant independent ofm1, m2 andm.

Proof. According to [17], we consider an elementtj1m1 ⊗ |j2m2〉 of T (j1) ⊗W(j2). Both
T (j1) andW(j2) are representation spaces ofUh(sl(2)) so that1(c), c ∈ Uh(sl(2)), acts on
T (j1) ⊗W(j2). For example,

1(H)tj1m1 ⊗ |j2m2〉 = adH(tj1m1)⊗ ehX|j2m2〉 + ad e−hX(tj1m1)⊗H |j2m2〉. (5.2)

The left-hand side of⊗ is a tensor operator, since the adjoint action is a linear transformation
on T (j1). Thus we can consider an action of the left-hand side of⊗ on the right-hand
side: t ⊗ |jm〉 → t |jm〉. This operation is called a ‘contraction’ in [17]. Noting that
ad e−hX(tj1m1) = e−hXtj1m1 ehX and contracting (5.2), we obtainHtj1m1|j2m2〉. A similar
calculation shows that

1(c)tj1m1 ⊗ |j2m2〉 → ctj1m1|j2m2〉 (5.3)

where the arrow means that the right-hand side is a result of the contraction.
An intermediate vector onT (j1) ⊗W(j2) is given by

|(j1m1)(j2m2)〉 =
ji∑

ki=−ji
α
m1,m2
k1,k2

tj1k1 ⊗ |j2k2〉. (5.4)

Because of (3.4), the action of1(Z±) on the vector yields

1(Z±)|(j1m1)(j2m2)〉 =
√
(j1∓m1)(j1±m1+ 1)|(j1m1± 1)(j2m2)〉

+
√
(j2∓m2)(j2±m2+ 1)|(j1m1)(j2m2± 1)〉. (5.5)

Using (5.3), we obtain

Z±|ϕ;m1m2〉 =
√
(j1∓m1)(j1±m1+ 1)|ϕ;m1± 1m2〉

+
√
(j2∓m2)(j2±m2+ 1)|ϕ;m1m2± 1〉 (5.6)

where|ϕ;m1m2〉 is the vector obtained from (5.4) by a contraction:

|ϕ;m1m2〉 =
ji∑

ki=−ji
α
m1,m2
k1,k2

tj1k1|j2k2〉.

The inner product of|j m± 1〉 and (5.6) gives the recurrence relations for〈jm|ϕ;m1m2〉√
(j ∓m)(j ±m+ 1)〈jm|ϕ;m1m2〉 =

√
(j1∓m1)(j1±m1+ 1)〈j m± 1|ϕ;m1± 1m2〉

+
√
(j2∓m2)(j2±m2+ 1)〈j m± 1|ϕ;m1m2± 1〉. (5.7)

The recurrence relations (5.7) are the same as those for thesl(2) CGCs; therefore, the
quantity〈jm|ϕ;m1m2〉 must be proportional to thesl(2) CGCs. Denoting the proportional
coefficient byI (j1j2j),

〈jm|ϕ;m1m2〉 =
ji∑

ki=−ji
α
m1,m2
k1,k2
〈jm|tj1k1|j2k2〉 = Cj1,j2,j

m1,m2,m
I (j1j2j). (5.8)

This relation can be solved with respect to〈jm|tj1k1|j2k2〉, and the Wigner–Eckart
theorem (5.1) has been proved. �
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Remark. From (3.7) and the fact that thesl(2) CGCs for bra and ket vectors are equal,
we see that the quantity appearing on the right-hand side of (5.1) is theUh(sl(2)) CGC for
bra vectors. This is a general property of the Wigner–Eckart theorem [18].
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